ÉLECTRICITÉ

Auteur Scénario Dessins

Traduction

KAZUHIRO FUJITAKI RE_AKINO MATSUDA

JEAN-YVES FÉVRIER

professeur d'électricité scénariste mangaka

agrégé

Avant-propos

L'électricité est omniprésente dans notre quotidien, tel un fluide magique qui donnerait vie à nos appareils. Comment expliquer ce qu'elle est? On fait souvent une analogie avec de l'eau qui circule. Mais cette image n'est guère parlante car l'électricité est invisible. Comment faire pour expliquer plus clairement sa nature?

Et comment présenter les nombreuses utilisations de l'électricité, comme la production de lumière, de chaleur et d'énergie?

Tout s'illumine en étudiant, tout simplement, les bases – à condition de les montrer, au lieu de les dire.

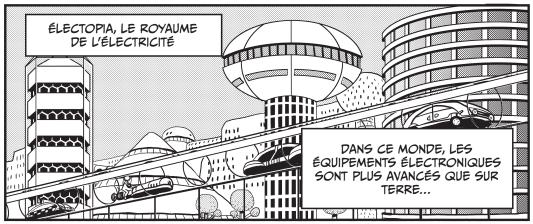
C'est ce que fait ce livre. Il présente les concepts fondamentaux de l'électricité dans une succession de chapitres qui exposent les idées à travers une histoire et des dessins. Chaque chapitre se termine par un texte qui approfondit les concepts, sans entrer dans les idées complexes ni les formules. Il suffit de lire l'histoire d'Hikaru, professeur d'électricité, et de Rereko, son élève venue de la planète Électopia. Vous verrez, ce professeur enthousiaste saura vous passionner autant que vous éclairer avec ses explications simples et percutantes.

Je suis très reconnaissant au mangaka Matsuda, qui a dessiné l'histoire, ainsi qu'à toutes les personnes du studio Trend Pro qui ont produit le livre. J'adresse aussi mes sincères remerciements au professeur Masaaki Mitani pour sa relecture, et à mon éditeur, Ohmsha, qui m'a donné l'occasion de rédiger ce manuel.

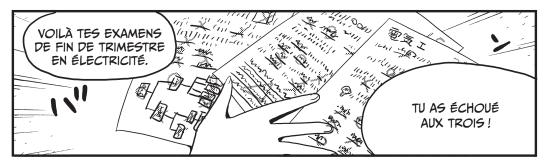
J'espère que ce manga vous fera mieux comprendre, et aimer, l'électricité.

Kazuhiro Fujitaki

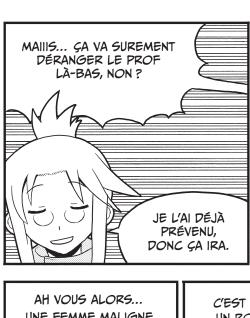
Table des matières

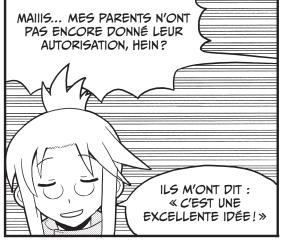

Prologue – Électopia, le royaume de l'électricité	19
Qu'est-ce que l'électricité ?	25
1. L'électricité dans la vie de tous les jours	26
Les unités en électricité	27
L'électricité à la maison	31
2. Comment fonctionne l'électricité	
La vraie nature de l'électricité	38 42
Courant et décharge électrique Structure atomique et conductivité	44
3. L'électricité statique	
L'échelle triboélectrique	4 0
Utilisation de l'électricité statique	55
4. Les étiquettes sur les appareils électriques	57
5. Préfixes du système international d'unités	58
6. Mesure de l'énergie électrique	58
7. Tension et potentiel	59
8. Atomes et électrons	
9. Électricité statique	62
Force électrostatique	62
L'échelle triboélectrique	64
Mouvement des charges et direction du courant	64
10. Le courant	
Intensité du courant	65
Vitesse du courant	66
2 Qu'est-ce qu'un circuit électrique?	67
1. Les circuits électriques dans les appareils du quotidien	
Le circuit de la lampe torche	71
Eléments d'un circuit électrique	73
2. Loi d'Ohm et les deux façons de connecter les composants électriques	
Circuit électrique et loi d'Ohm Branchements en série et en parallèle	80 81
Di anchements en serie et en paranete	01

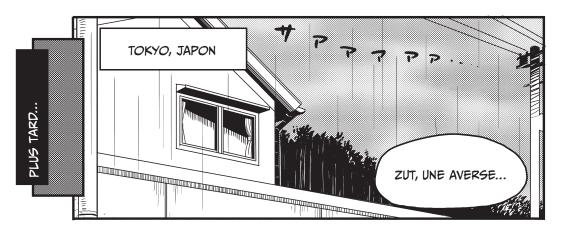
3. Circuits électriques et courant	85
Symboles dans la représentation graphique d'un circuit	85
Courant alternatif et courant continu	87
4. Loi d'Ohm	88
5. Résistivité et conductivité	
6. Montage en série	
Résistance équivalente	90
Montage en série de deux ampoules	90
7. Montage en parallèle	91
Résistance équivalente	91
Montage en parallèle de deux ampoules	91
3 Comment fonctionne l'électricité?	93
1. Pourquoi l'électricité produit de la chaleur	94
Électricité et effet Joule	97
Comment le courant génère-t-il de la chaleur?	99
Émission thermique et luminescence	102
2. Courant et champs magnétiques	
Règle de la main gauche pour un moteur alimenté en courant continu	110
Règle de la main droite pour les générateurs	112
3. Effet Joule	116
4. Agitation thermique	116
5. Ondes électromagnétiques	118
6. Électricité et magnétisme	120
7. Règle de la main gauche et moteurs	121
8. Règle de la main droite et générateurs électriques	
9. Électricité et bobines	
Bobines et induction électromagnétique	123
Bobines et inductance	124
Bobines et courant alternatif	125
Bobines et transformateurs	126
10. Condensateurs	128
Condensateurs et courant alternatif	128
4 Comment créer de l'électricité ?	131
1. Les sources de courant	132
Comment fonctionne un alternateur	135
2. Les générateurs de courant continu	138
Piles	140
Qu'est-ce qui se passe dans une pile?	146
Pile à combustible et eau	149
Anode et cathode	152

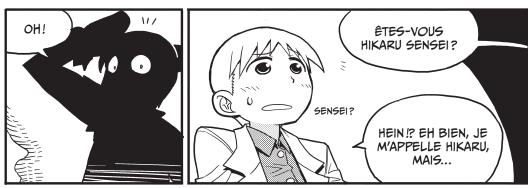

3. Créez votre propre pile	154
4. Thermopiles	155
5. Centrales électriques et génération d'électricité	
Production d'énergie thermique	163
Génération avec une centrale nucléaire	165
Centrale hydroélectrique	166
Centrale éolienne	168
4	
5 Comment utiliser l'électricité?	169
1 17 . 1	100
1. Un semiconducteur, c'est quoi?	
2. Diodes et transistors	
Diodes qui émettent de la lumière Transistors	188 190
3. Diodes	
4. Transistors	
Transistors à effet de champ	202
5. Redresseurs et onduleurs	
6. Capteurs	
Capteurs de température	205
Capteurs optiques	206
Épilogue	211
Index	219

PROLOGUE ÉLECTOPIA, LE ROYAUME DE L'ÉLECTRICITÉ







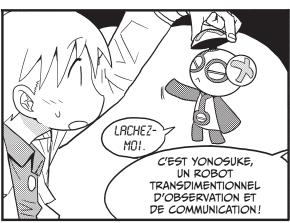


Cher Hikaru Yano Sensei,

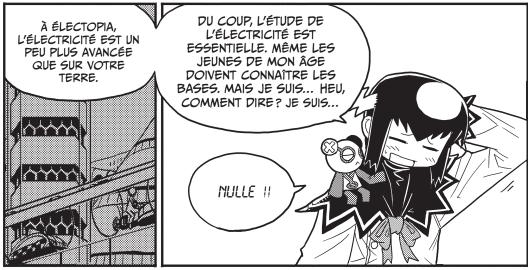
Je vous envoie mon élève Rereko. Je compte sur votre gentillesse pour que vous acceptiez de lui donner des cours. Elle en a vraiment besoin.

Teteka Sensei École de formation en électricité


À L'APPARTEMENT D'HIKARU

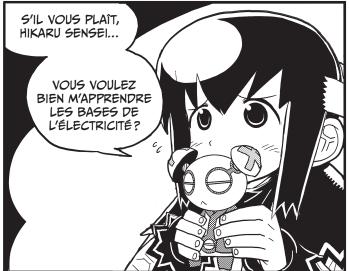


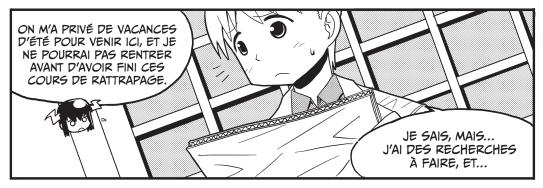
LA POU... LA POU... LA POUPÉE PARLE!?

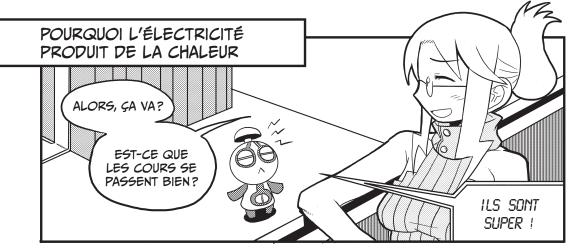


QUOI? TU POURRAIS M'EXPLIQUER ÇA EN REPRENANT DU DÉBUT? EH BIEN, HUM...

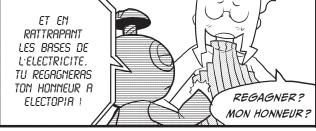
UNE POUPÉE!

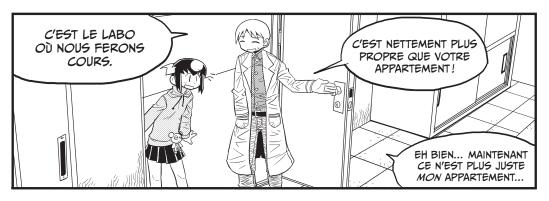


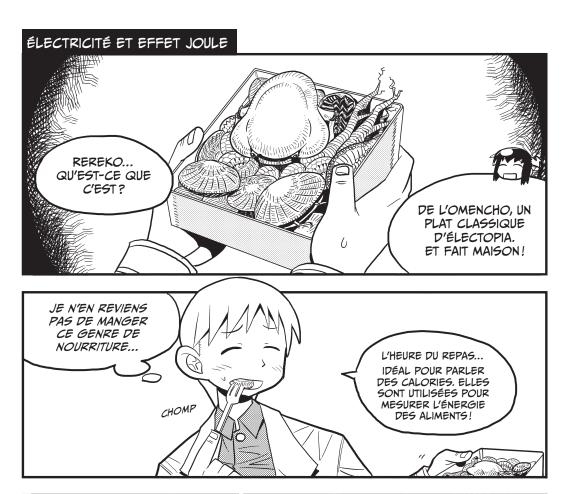


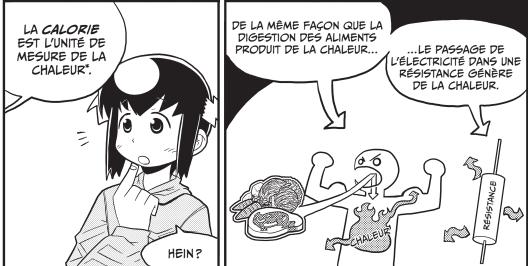


3

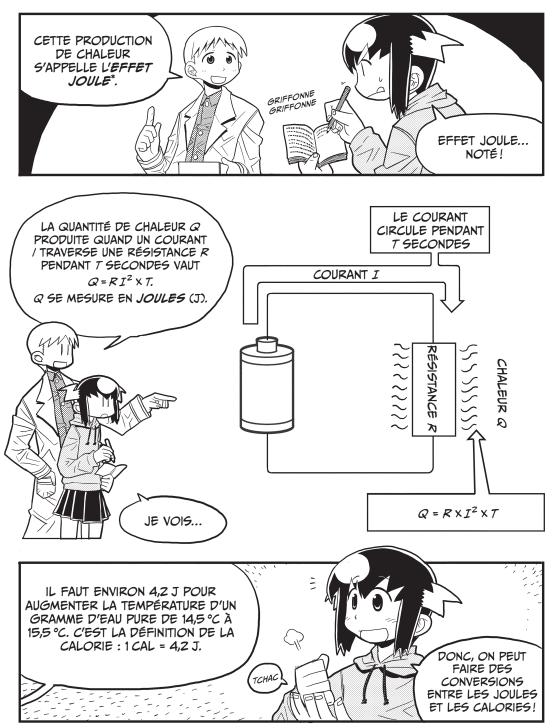

COMMENT FONCTIONNE L'ÉLECTRICITÉ ?



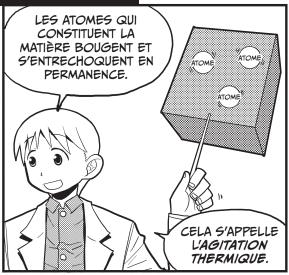



TRANSDIMENTIONNEL QUI OBSERVE ET COMMUNIQUE?

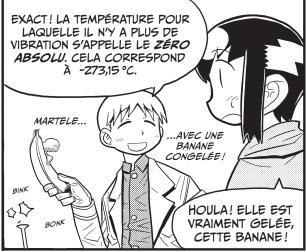
AÏE, DU CALME!

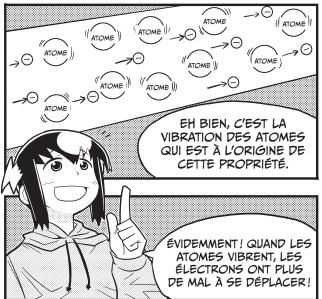


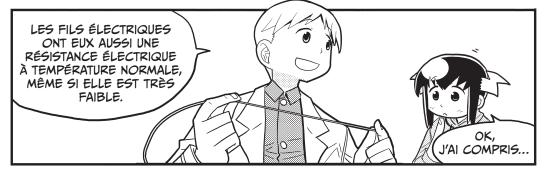


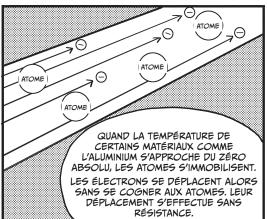

^{*} La calorie (cal) est l'unité de mesure traditionnelle de l'énergie en nutrition. En physique, l'énergie se mesure en joules (J).

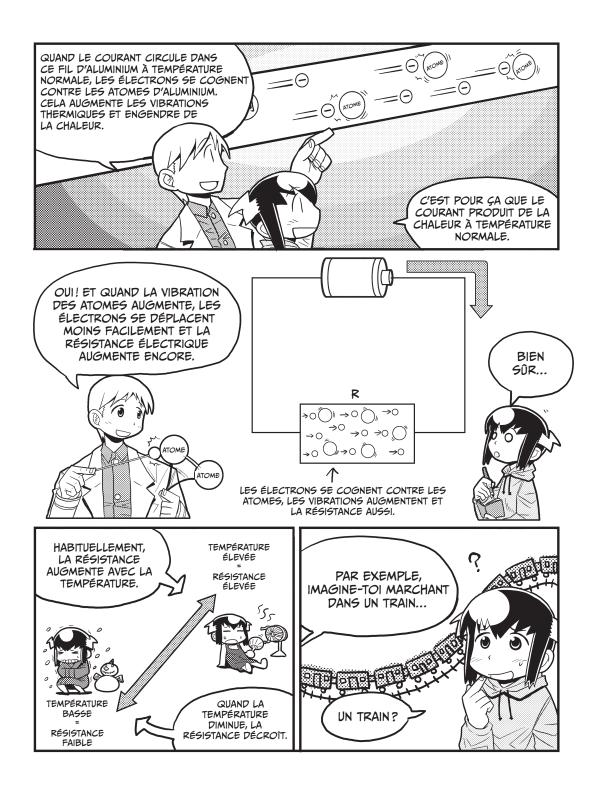
* En hommage au physicien anglais James Prescott Joule (1818–1889).

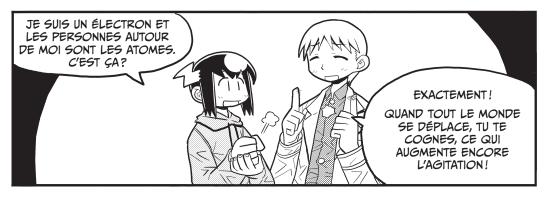

COMMENT LE COURANT GÉNÈRE-T-IL DE LA CHALEUR?

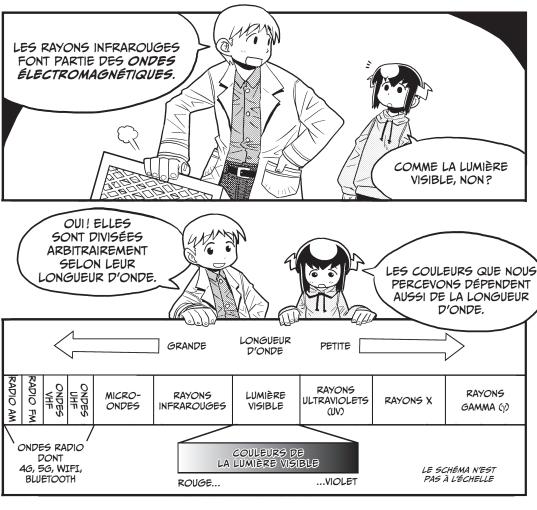


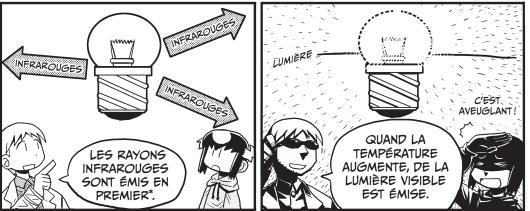


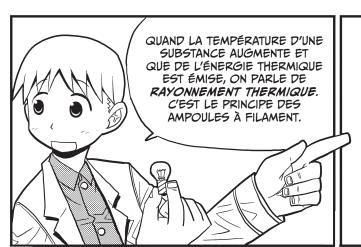


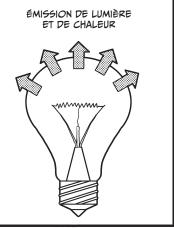




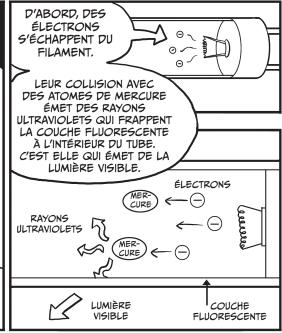




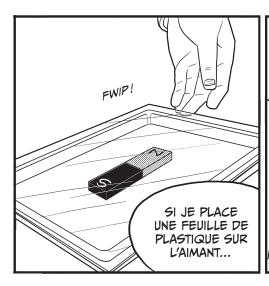


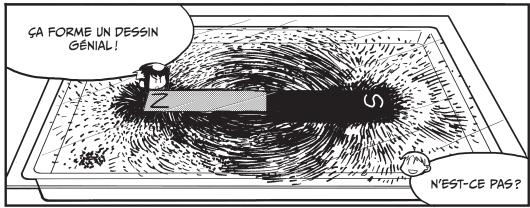


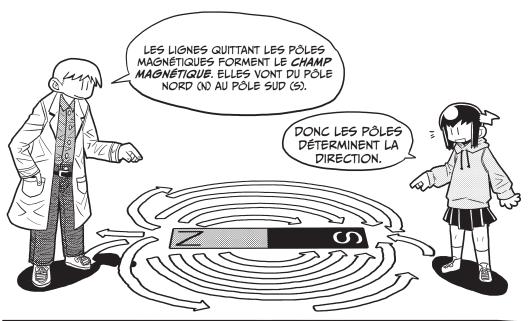
^{*} Pour des raisons pédagogiques, on présente une ampoule à filament, dite ampoule à incandescence. Elles ont été remplacées par les leds, qui n'émettent pas d'infrarouge.

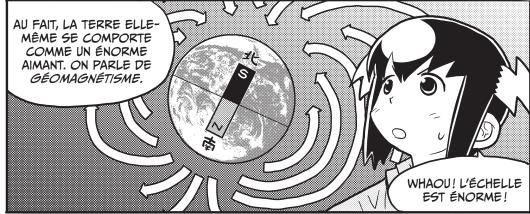


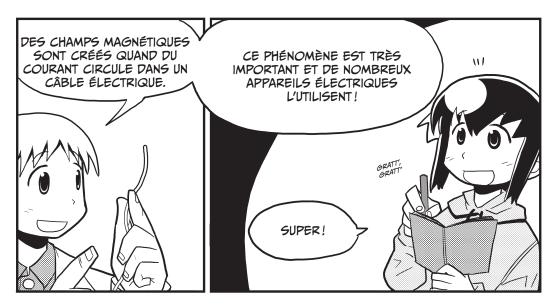
* Parfois appelés à tort tubes néon. Le tube fluorescent ne contient pas d'atome de néon, alors que les tubes néons (enseignes lumineuses) contiennent du néon mais ne sont pas fluorescents.

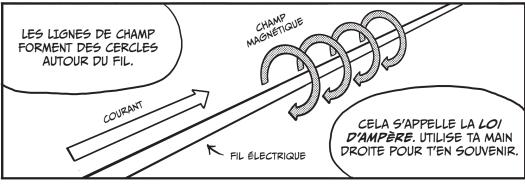


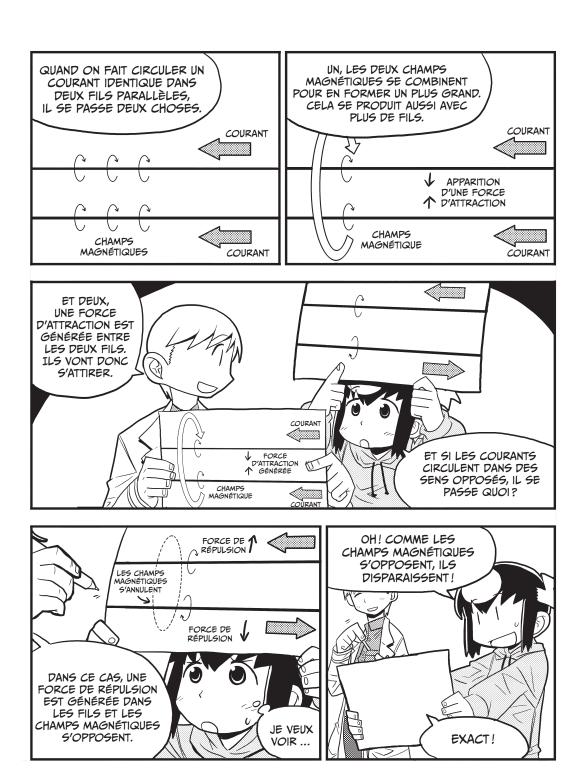

COURANT ET CHAMPS MAGNÉTIQUES

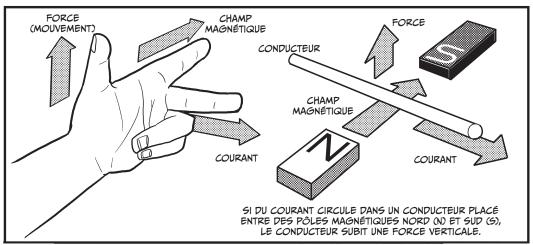


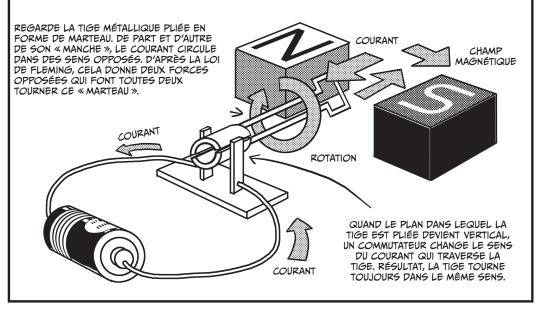




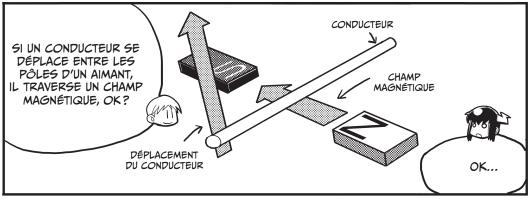


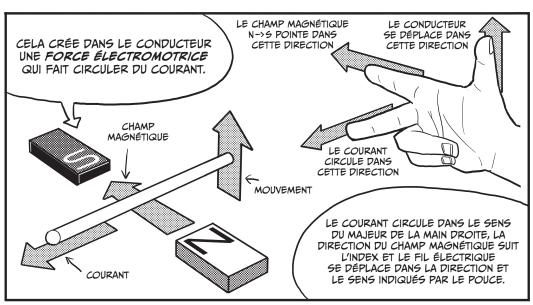




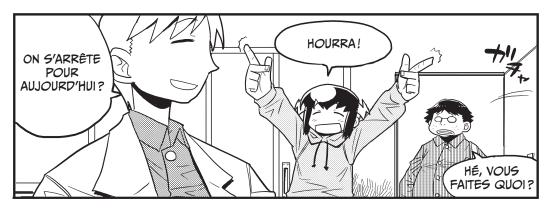


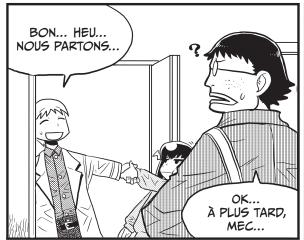


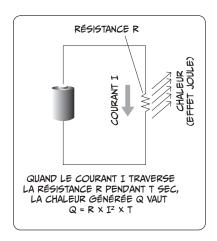










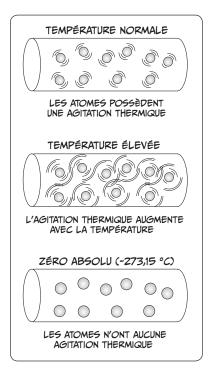


Effet Joule (chaleur)

L'effet Joule est la production de chaleur quand du courant circule dans une résistance

Un courant l traversant une résistance R pendant un temps t produit une énergie thermique de $Q = R \times l^2 \times t$ joules. Un joule, c'est la consommation d'un watt pendant une seconde : 1J = 1 Ws. On peut exprimer le joule à l'aide des unités de base : 1J = 1 kg m² s⁻². Élever 1 gramme d'eau pure de 14,5 °C à 15,5 °C sous une pression normale consomme 4,2 J, soit 1 calorie.

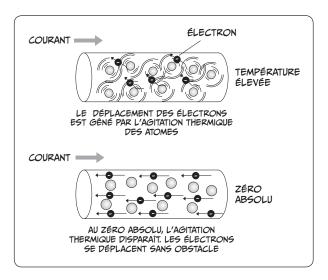
Résistance et effet Joule


Agitation thermique

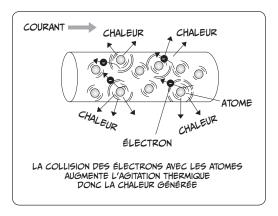
Mais concrètement, c'est quoi la chaleur? Les atomes formant la matière vibrent en permanence sous l'effet de l'agitation thermique. C'est cette agitation qui est à l'origine de la chaleur. Plus les atomes vibrent, plus la température augmente. Elle mesure la quantité d'agitation.

Quand les atomes ne vibrent plus, la température vaut – 273,15 °C. C'est le **zéro absolu**.

Les fils électriques sont en cuivre car ce matériau abondant possède une faible résistance à température ordinaire. Cette résistance, même faible, s'oppose au passage du courant. Cela augmente la chaleur du fil de cuivre et donc sa résistance.


Si la température d'un matériau s'approche du zéro absolu, les vibrations des atomes deviennent négligeables. Les électrons traversent alors très facilement le matériau : sa résistance diminue fortement.

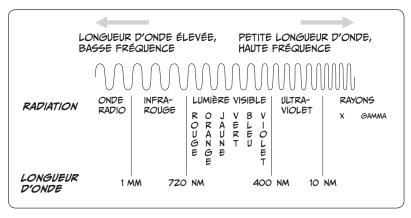
Agitation thermique et température


Certaines matières comme l'aluminium permettent d'atteindre la **supra-conductivité**. Dans cet état, la matière n'oppose plus aucune résistance au passage des électrons. Sa résistance est nulle.

De nombreux métaux s'approchent de la supraconductivité lorsque leur température est très proche du zéro absolu. Le problème, c'est que le zéro absolu est inatteignable pour des raisons théoriques et, plus on s'en approche, plus diminuer la température s'avère compliqué. La recherche s'oriente donc maintenant vers des alliages restant supraconducteurs bien au-delà du zéro absolu. La supraconductivité à température ambiante permettrait d'acheminer du courant n'importe où sans perte due à l'effet Joule.

Courant et supraconductivité

À température ambiante, les électrons heurtent violemment les atomes dans les fils électriques. Cela génère encore plus d'agitation thermique, c'est-à-dire de chaleur. La résistance augmente donc avec la température.

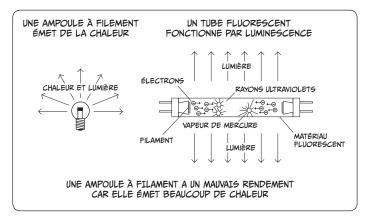


Collisions électrons/atomes et génération de chaleur

Ondes électromagnétiques

Lorsque le courant circule à travers une résistance et que la température augmente, de la chaleur est générée. Au début, seuls des **rayons infrarouges** invisibles sont émis.

Ces ondes qui transmettent de l'énergie thermique font partie des **ondes électromagnétiques**. Si on les classe par longueur d'onde décroissante, elles incluent les ondes radio, les rayons infrarouges, la lumière visible puis les rayons ultraviolets, X et gamma. Les longueurs d'onde de la lumière visible s'étalent de 720 nm (rouge) jusqu'à 400 nm (violet).

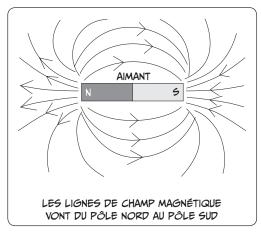

Classification des ondes électromagnétiques d'après leur longueur d'onde

L'émission d'infrarouges est le **rayonnement thermique**. Si la température continue à monter, de la lumière visible est émise en plus des rayons infrarouges. C'est comme cela que les ampoules émettent de la lumière.

L'émission lumineuse due au rayonnement thermique n'est pas efficace pour produire de la lumière : il y a plus d'infrarouges émis que de lumière visible. On peut émettre de la lumière sans rayonnement thermique : c'est la **luminescence**, qui produit de la lumière fluorescente.

Comment cela fonctionne-t-il? Dans un tube fluorescent, les électrons qui s'échappent du filament heurtent les atomes de vapeur de mercure contenus dans le tube. Cela produit des rayons ultraviolets qui excitent la substance fluorescente présente sur la face interne du tube. C'est cette dernière étape qui produit la lumière visible. Cette technique est très efficace: à consommation électrique égale, le tube émet quatre fois plus de lumière qu'une ampoule.

Le schéma suivant résume les productions de lumière avec émission thermique et par luminescence.

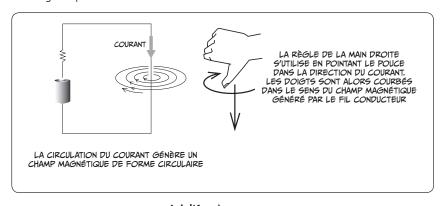

Rayonnements lumineux d'une ampoule et d'un tube fluorescent

Électricité et magnétisme

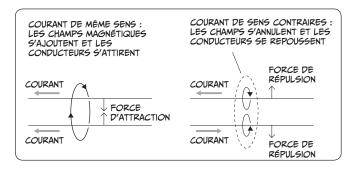
Placez une feuille de papier sur un aimant et saupoudrez-la de limaille de fer. Vous verrez des lignes partant du nord (N) de l'aimant pour arriver au sud (S). Ces lignes représentent

le **champ magnétique**.

La circulation du courant génère aussi des champs magnétiques. Ce phénomène est très important et largement exploité quand on utilise des appareils électriques.



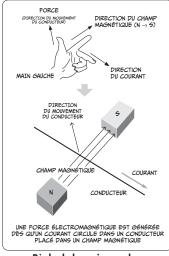
Un aimant et son champ magnétique


Quand du courant passe dans un fil électrique, un champ magnétique circulaire est généré autour du fil. C'est la **loi d'Ampère**. L'intensité du champ magnétique varie selon celle du courant. Si la direction du courant change, celle du champ magnétique aussi.

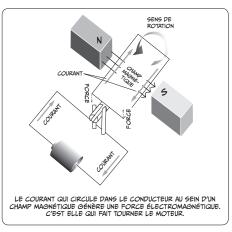
Si un courant de même intensité circule dans la même direction dans deux fils parallèles, les champs magnétiques induits dans les conducteurs se combinent pour former un champ deux fois plus intense. Un courant circulant dans le même sens dans des conducteurs proches et parallèles génère une force d'attraction qui tend à les rapprocher.

Inversement, si les courants circulent en sens contraire dans les conducteurs, une force répulsive est générée entre eux et les deux champs magnétiques s'opposent. Dans le cas où les courants sont de même intensité, le champ magnétique résultant est nul.

Loi d'Ampère



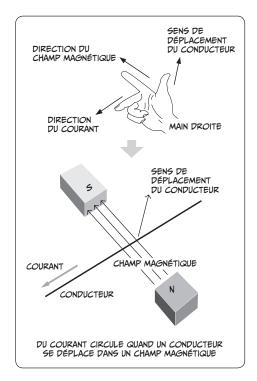
Forces générées par le passage du courant dans deux conducteurs parallèles

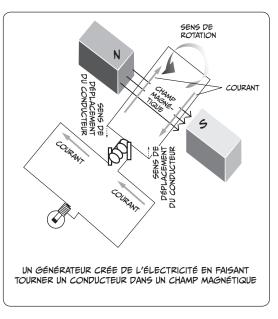

L'additivité des champs magnétiques s'applique quel que soit le nombre de fils, comme dans une bobine par exemple. Un champ magnétique très intense peut être généré.

Règle de la main gauche et moteurs

Si du courant circule dans un conducteur plongé dans un champ magnétique, une force électromagnétique est générée sur le conducteur. La règle de la main gauche aide à mémoriser les directions du champ magnétique, du courant et du mouvement du conducteur. Voilà son fonctionnement : en tendant perpendiculairement le pouce, l'index et le majeur de votre main gauche, l'index pointe dans la direction du champ magnétique, le majeur dans celle du courant et le pouce indique la direction de déplacement du conducteur (c'est-à-dire la direction de la force électromagnétique). Cette règle permet également de déterminer le sens de rotation d'un moteur.

Règle de la main gauche



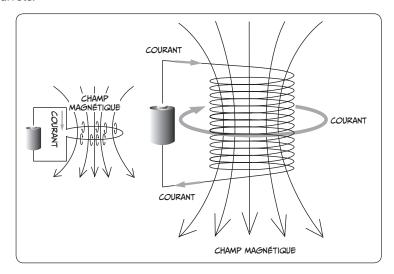

Rotation d'un moteur

Chapitre 3 121

Règle de la main droite et générateurs électriques

Quand un conducteur se déplace entre les pôles d'un aimant, il traverse un champ magnétique orienté du pôle nord (N) au pôle sud (S) de l'aimant. Une force électromotrice est générée dans le conducteur et du courant circule. La règle de la main droite permet de retenir facilement les directions des éléments en jeu. Tendez le pouce, l'index et le majeur de votre main droite pour qu'ils soient perpendiculaires entre eux. Le pouce désigne alors la direction de déplacement du conducteur, l'index la direction du champ magnétique et le majeur pointe dans la direction du courant.

Création d'électricité par un générateur


Règle de la main droite

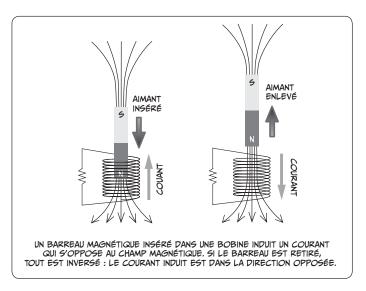
Il faut appliquer une force pour que la boucle continue à tourner dans le champ magnétique. Elle peut par exemple venir d'une chute d'eau (centrale hydroélectrique) ou être générée par de la vapeur d'eau sous pression comme dans une centrale nucléaire.

Pourquoi les règles des mains gauche et droite s'appliquent? En apprenant comment l'électricité et le magnétisme sont liés, nous comprendrons mieux le fonctionnement des générateurs et des moteurs.

Électricité et bobines

Un fil électrique courbé pour former une spirale s'appelle une **bobine**. Lorsque du courant y circule, un champ magnétique est généré à l'intérieur. Si on insère un barreau en fer dans la bobine, le champ magnétique se concentre dedans et le barreau devient un **électroaimant**. Sa puissance est proportionnelle à l'intensité du courant et au nombre de spires de la bobine. Si on inverse le sens du courant, les polarités de l'électroaimant s'inversent. Bien entendu, le champ magnétique induit dans l'électroaimant disparaît quand le courant s'arrête.

Champ magnétique créé par une bobine de fil électrique

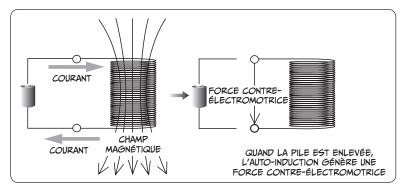

Votre main droite est de nouveau utile : il suffit de plier les doigts dans la direction du courant qui traverse la bobine pour que votre pouce pointe vers le pôle nord du champ magnétique induit.

Bobines et induction électromagnétique

Faire coulisser un barreau aimanté dans une bobine induit un courant dans la bobine. Ce courant génère un champ magnétique opposé à celui du barreau, Si le déplacement du barreau magnétique change de sens, le courant induit dans la bobine s'inverse également. On appelle cela l'induction électromagnétique. La tension que ce processus génère est la force électromotrice induite. Le courant qui apparaît est le courant induit.

La loi de Lenz-Faraday* indique que le sens du courant induit est tel que le champ magnétique qu'il produit s'oppose au mouvement du barreau aimanté.

^{*} Physiciens russe Heinrich Lenz (1804-1865) et britanique Michael Faraday (1791-1867).



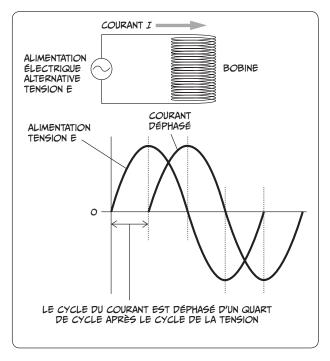
Induction électromagnétique

Bobines et inductance

Connectons une bobine à une pile. Le courant commence à circuler et le champ magnétique généré s'amplifie. La bobine devient un électroaimant. Une force électromotrice induite est alors générée dans la bobine elle-même à cause de la variation du champ magnétique. C'est ce qu'on appelle l'*auto-induction* ou plus simplement l'*inductance*.

Si le courant circulant dans la bobine est coupé, le champ magnétique disparaît progressivement et une force électromotrice induite est générée dans le sens inverse du courant. C'est la force contre-électromotrice, qui peut se vérifier facilement. Quand la pile est connectée à la batterie et que le courant circule, un champ magnétique est généré. Quand le courant devient constant, il n'y a pas de force contre-électromotrice mais quand on coupe le courant en enlevant la pile, le champ magnétique qui était généré diminue. À ce moment, la tension due à la force contre-électromotrice apparaît aux deux extrémités de la bobine.

Auto-induction dans une bobine

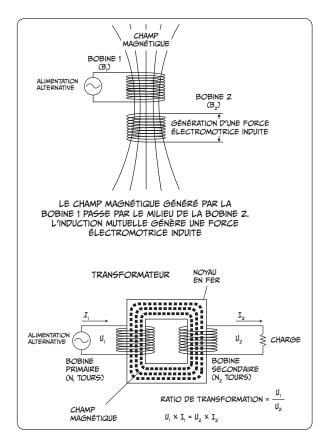

Bobines et courant alternatif

L'intensité du courant alternatif varie constamment. Un courant alternatif circulant dans une bobine génère une force électromotrice induite qui s'oppose à la direction du courant. Le courant qui circule est en retard d'un quart de cycle par rapport à la tension d'alimentation (elle aussi alternative). On dit que le courant est en **déphasage** (décalage). La **différence de phase** vaut un quart de cycle par rapport à la tension. Ce courant déphasé circule dans les appareils électriques comme les moteurs équipés d'une bobine. En fait, la bobine agit comme une résistance sur le courant comme nous l'avons décrit précédemment. On parle de **réactance inductive**. Son intensité est proportionnelle à la fréquence du courant alternatif.

La puissance électrique consommée est le produit *tension × courant*. Quand les ondes de tension et de courant se superposent, 100 % du travail est fait : le facteur de puissance vaut 100 %. Si le courant est déphasé, le facteur de puissance est inférieur à 100 %.

Quand un circuit a un faible facteur de puissance, la puissance électrique fournie par l'alimentation ne travaille pas à 100 %. L'alimentation doit en conséquence être plus puissante. Le facteur de puissance se définit avec un quotient :

Chapitre 3 125


Courant déphasé parcourant une bobine

Bobines et transformateurs

Si on connecte une alimentation alternative à une bobine B_1 , on génère un champ magnétique. Lorsque ce champ varie dans la bobine B_2 , une force électromotrice induite est générée dans B_2 . C'est ce que l'on appelle l'**induction mutuelle**. Un **transformateur** est un appareil électrique qui modifie la tension par induction mutuelle.

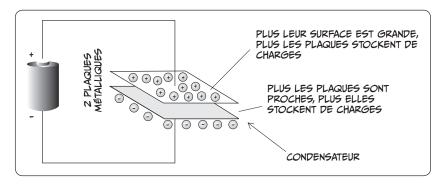
Enroulons deux bobines B_1 et B_2 autour d'un cadre en fer doux. Si une alimentation alternative est connectée à B_1 , un champ magnétique est généré et suit le cadre. Comme B_2 est entourée autour du même cadre, le champ magnétique varie dans B_2 et une force électromotrice induite y est générée.

La bobine alimentée par l'alimentation alternative est l'**enroulement primaire**. Le côté contenant la charge est l'**enroulement secondaire**. La tension générée dans l'enroulement secondaire dépend du ratio entre le nombre de spires de la bobine primaire (n_1) et celui de la bobine secondaire (n_2) . Par exemple, si n_2 est le double de n_1 , la tension générée dans la bobine secondaire est doublée et le courant est divisé par deux.

Induction mutuelle dans un transformateur

Passons de l'exemple à la théorie : le produit de la tension et de l'intensité primaires $(U_1$ et I_1) est égal au produit de la tension et de l'intensité secondaire $(U_2$ et I_2). L'équation est :

$$U_1 \times I_1 = U_2 \times I_2$$


Le ratio entre les tensions primaire et secondaire est le **ratio de transformation**. Un transformateur ne modifie donc que la tension, pas l'intensité de la puissance électrique.

Condensateurs

Plaçons un isolant entre deux plaques de métal connectées à une pile. Disons que la plaque du bas est reliée au pôle négatif et celle du haut au pôle positif. Le sens de déplacement des électrons dans un circuit est l'opposé de celui du courant. Ils vont donc quitter la plaque métallique du haut et s'accumuler sur la plaque métallique du bas. On a ainsi créé un *condensateur*.

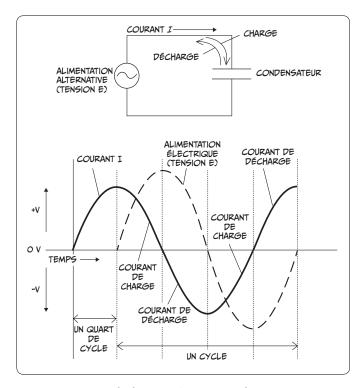
Le courant circule dès que la pile est connectée, puis diminue à mesure que la charge s'accumule sur les plaques. Il finit par s'arrêter complètement. Si on enlève la pile, le condensateur reste chargé. Si on branche alors la pile en sens inverse, le condensateur se décharge, puis se recharge dans le sens opposé.

La faculté d'un condensateur à emmagasiner la charge s'appelle sa *capacité*. Elle est directement proportionnelle à la surface des plaques de métal et inversement proportionnelle à la distance entre elles. Elle se mesure en *farads* (de symbole F).

Charge stockée dans un condensateur

Condensateurs et courant alternatif

Quand une tension alternative est appliquée à un condensateur, un courant circule jusqu'à ce que la tension de l'alimentation atteigne son maximum (en partant de 0 V). Le courant est nul lorsqu'on arrive à la tension de crête. La tension diminue ensuite et la décharge commence. Le courant de décharge atteint son maximum quand la tension vaut 0 V.


À ce moment, la polarité de la tension électrique change et le courant circule de nouveau. Le condensateur arrête de se charger quand la tension atteint sa crête à la polarité opposée. La décharge recommence.

Branchons un condensateur à une tension alternative. La variation du courant est décalée d'un quart de cycle par rapport à la variation de la tension d'alimention. On parle de *courant de charge*.

Comme toute charge, un condensateur résiste au passage du courant. Il se comporte donc partiellement comme une résistance, dont la valeur s'appelle la **réactance capacitive** du condensateur. Elle est inversement proportionnelle à la fréquence du courant.

Si un circuit comportant une bobine est alimenté en tension alternative, le courant retarde par rapport à la tension et le facteur de puissance diminue. Si on ajoute ensuite un condensateur, le retard du courant diminue et le facteur de puissance augmente.

Dans un circuit alimenté en courant alternatif, la résistance qu'opposent les bobines et les condensateurs au passage du courant s'appelle leur **impédance***.

Courant de charge atteignant un condensateur

^{*} Du latin impedere, « gêner », « entraver ».

Index

A	ch
anion	
В	cir
barrière de potentiel 184–185 batterie 57, 71–72, 75–76, 138–139	
AA	
au lithium	col
bobine et	coi
réactions chimiques134	coı
bilame	coı
	coı
C	COI
	CO
calorie	coı
capteur204–209	
cathode 150–153, 183, 185, 207	
cation 141–142	
cellule	
galvanique140, 144	
voltaique139	
centrale électrique 32, 134, 161–168	

champ magnétique 106–110, 112, 119–121, 123, 126, 135, 162

charge 41, 73–74, 85, 150, 196, 201
attraction et répulsion . 37, 61–62, 109, 120
condensateur127
décharge électrique 43–45, 63
mesure
négative/positive41–45, 48–51, 54, 59–60, 62–64
polarité53
circuit
courant alternatif87–88
courant continu 76, 86–87
intégré 197
méthodes de connection81–84, 90–92
collecteur191–194, 196
composant semi-conducteur177
condensateur127–128, 201
conductance
conductivité 46-47, 89, 149, 180, 182
photoconductivité 207, 209
supraconductivité100, 117
connection
parallèle81–84, 91–92
série81–84, 90–92
courant
collecteur-émetteur 196, 202
de base 192–196
de collecteur
direct 76, 78, 86–87, 137, 163, 187, 203–204
direction 45, 63–64, 75–78, 87, 108–113
drain202
écoulement 27-29, 32-36, 70, 73,
75–80, 85–90, 108, 120–121, 142

induit	électricité nature de 37-41 statique 37, 41, 44, 48-52, 61-65 électrode 141, 150, 183, 191 électrolyte 140, 144, 146, 154 électromagnétique force force 121, 123 induction 123-124 onde 103, 118-119 électromotrice (force) 73, 85, 112, 122-124, 136, 144 électron 38-41, 46-47, 59-60 de valence 46-47, 60, 179-181 libre 39-40, 59-60 mouvement et charge électrique
dépolariseur .145 différence .125 de potentiel .27-28 diode 177, 183-185, 187, 191, 197, 200-203 à tension constante .201 photodiode .207-208 pont .200 tension continue .201 Zener .201-202 dopage .178 drain .203	61, 63–65 réaction chimique 142–143, 151–152 trou 181, 184, 188, 191–192 valence 46–47, 60, 179–181 vitesse 65 émetteur 191–194, 196 énergie chaleur 73–74 définition 58 lumière 73–74 mesure 58 solaire 138–139 thermique 118, 138
E	F
de champ 202–203 joule 98, 116 Peltier 158 photoélectrique 206, 209 photovoltaique 207 Seebeck 156–158	farad

de répulsion	$f K$ kilowatt-heure (kWh) $\dots 30-31, 58$
génération d'énergie 134, 161–168 H hertz (Hz) 77, 87, 136, 163	LED
impédance	M
induction électromagnétique	micro-onde
J	neutron
jonction base-collecteur	O

ohm (Ω)	S
P	semiconducteur . 42, 177–178, 182–186 structure des atomes
photoconductivité	T
pile sèche . 139, 144–148, 185–186, 192 alkaline	tableau électrique
types	thermique
R	thermopile
rayons gamma	à effet de champ
réacteur nucléaire 161, 165–166 réaction chimique 138–146, 151–152 d'oxydo-réduction 146 électrochimique 146 résistance . 73–74, 79–92, 97, 100–101,	à gaz
116–117, 196 résistivité	zéro absolu99–100, 116–117